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the layer displacements at some definite regular interval% 
which may not always be possible, as in the case of CdBrz 
crystals. It is seen that these crystals always display large 
arcing and heavy streaking on their X-ray photographs 
(Agrawal & Trigunayat, 1970), indicating that the edge 
dislocations and the stacking faults occur more frequently 
in them than in CdI2 or PbI2 crystals. The frequency of 
layer displacements may be too high to render the chances 
of their stabilization a remote possibility. Hence, the ob- 
served low incidence of polytypism in CdBr2 crystals is 
accounted for. 

These observations lead to the conclusion that various 
polytypes are formed by the creation of stacking faults 
at different regular intervals. The formation of several 
polytypes of CdI2, e.g. 3OR, 42R, 8H~, 24Hg (Chadha & 
Trigunayat, 1967a,b), 12R (Agrawal & Trigunayat, 1968), 
20Hp, 20H~ (Agrawal, Chadha & Trigunayat, 1970b), 18H~, 
30Hs, 24R and 36R (Jain, Chadha & Trigunayat, 1970) 
and of PbI2 (Agrawal et al., 1970a) have already been ex- 
plained in similar terms. Recently Mardix, K~ilm~n & 
Steinberger (1968) have also explained the formation of 
various polytypes of ZnS in terms of periodic slip at reg- 
ular intervals. The formation of various structural series, 
viz. (22),1111 in CdI2 (Agrawal et al., 1970b) and (11),22 
in PbI2 (Agrawal et al., 1970a) can be easily explained by 
considering a double stacking fault occurring in their com- 
mon polytypes at regular intervals of 4(n+ 1) layers and 
2(n+2) layers, respectively [Fig. l(a),(b)]. The common 
polytypes of CdI2 and PbI2 are the types 4H and 2H, respec- 
tively. A double fault is formed when a single fault is im- 
mediately followed by another single fault [Fig. l(a),(b)]. 
The formation of rhombohedral polytypes of CdI2 belong- 
ing to the [(22),1313 series, viz. 12R (Agrawal & Trigunayat, 
1968) and 24R (Jain et al., 1970), can be easily explained 
in terms of a single stacking fault occurring at an interval 
of 4(n+ 1) layers in the common type 4H [Fig. l(c)]. CdI2 
polytypes belonging to (22), 11 series (Chadha & Trigunayat, 
1968) can be explained by considering an intrinsic fault 
(a low energy type fault which does not disturb nearest- 

neighbour packing), produced by shearing operations on 
the {0001 } planes about the B layer, in the common type 
4H with layer sequence (AyB)(CaB) after every (4n+ 2) 
layers. 
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Das Gupta & Welch have introduced the concept of 'coherent crystal radiation' to explain their experiments. 
As a consequence of their interpretation the fundamental X-ray line widths taken with the double-crystal 
spectrometer are in error. As shown in the present paper, the results of Das Gupta & Welch can be explained 
by means of the existing theories of the double-crystal spectrometer and triple-crystal diffractometer. 

In their recent paper Das Gupta & Welch (1968) have 
made essentially two statements: 

(I) In the double crystal spectrometer arrangement (DCS) 
the second crystal is the source of a 'coherent crystal 
radiation' (CCR) (which results in the appearance of extra 

* Present address: Institute of Physical Chemistry, 
Czechoslovak Academy of Sciences, Prague, Czechoslovakia. 

peaks in the triple-crystal diffractometer (TCD) rocking 
curves). 

(II) As a consequence of (I) DCS is 'obviously unsuit- 
able to determine the fundamental widths of X-ray emis- 
sion lines'. 

The aim of the present paper is to show that one can 
explain both the extra peaks and the line-widths by means 
of the existing theories of DCS (Compton & Allisson, 



with 

1935) and the triple-crystal diffractometer (TCD) (Bub~i- 
kov~i, Drahokoupil & Fingerland, 1961) without introdu- 
cing new concepts. 

We start with the equation for TCD [Bub~ikov~t et aL, 
1961, equation (1)] written for the (1,1,n) position (neglect- 
ing the vertical divergence,* extending the integration lim- 
its to ( - 0 %  oo) and including the angular shift fl of the 
second crystal from the maximum of the spectral line) 

PB(y) oC 

x Dx - fl]Cn[y + ~ + 2f l -  ( 2 -  2o)D~]dctd2 . (1) 

Here I is the spectral distribution of the measured emission 
line, 20 the wavelength at its maximum intensity, C: and 
C, the diffraction patterns for the 1st and nth order re- 
spectively; D,=tan&/2o are the corresponding dispersions 
and y the angular setting of the third crystal. 

We introduce D./DI = k.,  ( 2 -  2o)D1 = 1 and J(1) = I(l/Dx), 
and get 

PB(y) oc l I  d(l)Cl(o~- l)Ca ( -  o~- l -  fl) 

× C,,(y + ~ + 2f l -  knl)do:dl. (2) 

This is the expression for the TCD rocking curve, and by 
substituting ~ + 2f l -  k,,l = x we get 

PB(7) or. I SB(x)C,,(y + x)dx,  (3) 

with 

I J(l)Ca[x- 2fl+ (kn - 1)l]Cx[- x S~(x) o c  

+ # -  qc. + 1)t]dt. (4) 

Thus PB (7) results from SS (x) by smearing with Cn. The 
'smearing' is a known effect, and therefore we shall discuss 
only SB (x). It is a rather complicated function. However, 
to a good approximation all functions on the right hand side 
of equation (4) are bell shaped and reach their maxima for 
zero value of their argument. Thus we may estimate, at 
least qualitatively, the positions of the maxima of SB (x) by 
looking for the conditions of the maximum overlap of the 
functions behind the integration sign. This gives the fol- 
lowing values: 

Xl•fl X2=2fl x3=(kn+3)fl/2. 

According to the experimental conditions of Das Gupta & 
Welch (1968) we have x3 --- 2/~, ~rfl, 3fl for the first, second 
and third order respectively. In Fig. 1 of Das Gupta & 
Welch (1968) we may see only maxima x: (denoted by A) 
and not resolved maxima x2 x3 (denoted by B). Our own 
measurements show all three peaks in corresponding points 
(Fig. 1). 

Hence we conclude, that the 'CCR' is in fact a conse- 
quence of the overlap of the long-tailed functions J and 
C's. 

The spectral measurements according Das Gupta & 
Welch (1968) are made by plotting the peak intensity at 
the point B(~x3)* as a function of/L 

If we put 7 = - x 3  in (2) and make the substitutions 
~+f l /2=x,  l+fl/2=y, we get 

* See note at the end of this paper. 

P~{,/) 

P([3) oc I J ( y -  fl/2) V(y) dy ,  (5) 

V(y)= I C 1 ( x - y ) C : ( - x - y ) C , , ( x - k , , y ) d x .  (6) 

Equation (5) shows that we get the spectral distribution J 
'smeared' by V(y) from equation (6). 

This smearing function is the clue to the explanation of 
the extremely narrow spectral line widths, obtained by Das 
Gupta & Welch, namely, the correction used in their paper 
is the subtraction of the width of the smearing function w• 
from the width of the observed curve, i.e. 

W T  ~-- W O  ~ W R .  

This is by no means exact, but may still be a reasonable 
estimate, if we take for wn the width of V(y). But in the 
paper cited, wR was taken constantly equal to the width of 
the parallel position rocking curve of DCS, which in our 
notation reads 

VP(y) = ~ Cl(X-y)C:(x+y)dx .  (7) 
d 

By comparing (6) and (7) we may see, that even in the 
first order the correction made by Das Gupta & Welch is 
not correct. 

S p(x) 

I t p I 

( k + 3 ) - ~  213 13 0 --,,' ¥ 

(a) 
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(b) 

Fig. 1. (a) TCD rocking curve P# (y) in the (1,1,3) position, 
using three germanium crystals cut parallel to the (111) 
planes. Mo K~t radiation; fl=32"5 seconds of arc; k=3.15. 
(b) The corresponding S B (x) resulting from a (rather crude) 
calculation according to equation (4). fl= 33 seconds of arc; 
k=3. 
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We measured the Mo Ket spectral line by TCD in the 
position (1,1,1) and (1,1,3) and by DCS in position (1,1). 
The DCS width is larger than the widths taken with TCD. 
This is in agreement with smaller widths of the smearing 
functions shown in Table 1. 

Table 1 Widths (wR) of the smearing functions 

Experimental arrangement with germanium crystals cut par- 
allel to the (111) planes; Mo K~I radiation. 

Position wR 
(1,  - 1) 0.17 mA 
(1,1,1) 0"15 
(1,1,3) 0.05 

Conclusions 

The paper of Das Gupta & Welch seemed to support their 
statement that the fundamental widths of the X-ray emis- 

sion lines taken with DCS are in error. In view of our own 
analysis and experiments this statement is not convinc- 
ing. 

Note: - The role of the vertical divergence, the use of x3 
instead of the (unsuitable) position of the maximum B, and 
perhaps other questions should be treated in detail, but were 
omitted here because of their complexity. 
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The role of the dispersion correction in the analysis of X-ray diffraction data of lithium fluoride has been 
considered by applying the recent theoretical and experimental values of the dispersion corrections. 

In applying modern methods in the analysis of X-ray 
diffraction data the dispersion corrections are introduced 
as parameters. Their contributions are commonly taken into 
account by assuming the theoretical values. Of these, the 
most often used and probably the most reliable are those 
of Cromer (1965) and Cromer & Liberman (1968). Re- 
cently, Bonse & Hellk6tter (1969) have determined the real 
part of the dispersion corrections from measurements of 
the refractive index for Cu K~ radiation. Their result for 
fluorine in lithium fluoride, Af'= 0"18 + 0.02, is in indisput- 
able disagreement with the theoretical value Af'=0.081 
(Cromer & Liberman, 1968).t In this note we consider the 
effects of this difference on conclusions arrived at in 
the analysis of the recent X-ray diffraction study for lith- 
ium fluoride (Merisalo & Inkinen, 1966). 

First, the Debye-Waller coefficients B [in exp {-B(sinO/ 
2)2}] have been determined by employing the difference 
Fourier method (see e.g. Kurki-Suonio & Fontell, 1964; 
J~trvinen & Inkinen, 1967). The resulting values are listed 
in Table 1 along with the values calculated by Merisalo 
(1968) from the eigenfrequency- eigenvector data reported 
by Karo & Hardy (1963). It is obvious from Table 1 that 
the adoption of the experimentally determined result for 
the dispersion correction of fluorine gives particularly close 
agreement of the experimental and theoretical B and B÷/B- 
values. Further, the experimental Debye-Waller coefficients 
and their ratio are found to be strongly dependent on the 
values of the dispersion correction applied. Thus any com- 
parison between a theoretical vibration model and experi- 
mental results is of little value unless the dispersion correc- 

t Note added in proof: Creagh & Hart (1970) give an experi- 
mental value A f" = 0.099 + 0.009 

tions are known reliable enough. It should be realized that 
the ratio of the Debye-Waller coefficients is probably the 
best test of the various theoretical vibration models (Karo 
& Hardy, 1969). 

Table 1. The experimental and theoretical Debye-Waller 
coefficients of lithium fluoride at 300°K in (/~.)2 for the 

cation (B+) and anion (B-) together 
with their ratio (B+/B-) 

C & L  B & H  K & H  
B+ 1"04 1"02 1"01 
B- 0"67 0"82 0"83 
B+/B- 1"55 1 "24 1 "22 

L: with the dispersion corrections calculated by Cromer 
& Liberman (1968). 

H: with the dispersion corrections measured by Bonse & 
Hellk6tter (1969). 

H: calculated from the normal mode data of Karo & 
Hardy (1963). 

Secondly, the electron distributions of the atoms in 
lithium fluoride were studied in terms of cubic harmonics, 
(Kurki-Suonio & Meisalo, 1967; Kurki-Suonio, 1967, 
1968). Again, the analysis was carried out by applying 
both the theoretical and experimental values for the disper- 
sion correction of fluorine. As an example, the differences 
between experimental and theoretical radial scattering am- 
plitudes of fluorine, Afo (the spherical component) and 
A f4 (the first non-spherical component), are illustrated in 
Fig. 1. It is found that the Afo component is sensitive to 
the choice of the dispersion correction while the non-spher- 
ical component A f4 is, to first order, independent of the 


